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Abstract

Outlier detection is an integral part of data mining and has attracted much attention recently [BKNS00,
JTH01, KNT00]. In this paper, we propose a new method for evaluating outlier-ness, which we call
theLocal Correlation Integral(LOCI). As with the best previous methods, LOCI is highly effective
for detecting outliers and groups of outliers (a.k.a.micro-clusters). In addition, it offers the following
advantages and novelties:(a) It provides an automatic, data-dictated cut-off to determine whether a
point is an outlier—in contrast, previous methods force users to pick cut-offs, without any hints as to
what cut-off value is best for a given dataset.(b) It can provide a LOCI plot for each point; this plot
summarizes a wealth of information about the data in the vicinity of the point, determining clusters,
micro-clusters, their diameters and their inter-cluster distances. None of the existing outlier-detection
methods can match this feature, because they output only a single number for each point: its outlier-
ness score.(c) Our LOCI method can be computed as quickly as the best previous methods.(d)
Moreover, LOCI leads to a practically linear approximate method,aLOCI (for approximate LOCI),
which provides fast highly-accurate outlier detection. To the best of our knowledge, this is the first
work to use approximate computations to speed up outlier detection.
Experiments on synthetic and real world data sets show that LOCI and aLOCI can automatically detect
outliers and micro-clusters, without user-required cut-offs, and that they quickly spot both expected
and unexpected outliers.



1 Introduction

Due to advances in information technology, larger and larger amounts of data are collected in databases.
To make the most out of this data, efficient and effective analysis methods are needed that can extract
non-trivial, valid, and useful information. Considerable research has been done toward improving
knowledge discovery in databases (KDD) in order to meet these demands.

KDD covers a variety of techniques to extract knowledge from large data sets. In several problem
domains (e.g., surveillance and auditing, stock market analysis, health monitoring systems, to mention
a few), the problem of detecting rare events, deviant objects, and exceptions is very important. Meth-
ods for finding such outliers in large data sets are drawing increasing attention [AY01, AAR96, BL94,
BKNS00, JKM99, JKN98, KN97, KN98, KN99, KNT00]. The salient approaches to outlier detec-
tion can be classified as eitherdistribution-based[BL94], depth-based[JKN98], clustering[JMF99],
distance-based[KN97, KN98, KN99, KNT00], ordensity-based[BKNS00] (see Section 2).

In this paper we propose a new method (LOCI—LOcal Correlation Integral method) for finding
outliers in large, multidimensional data sets. The main contributions of our work can be summarized
as follows:

• We introduce themulti-granularity deviation factor(MDEF), which can cope with local den-
sity variations in the feature space and detect both isolated outliers as well as outlying clus-
ters. Our definition is simpler and more intuitive than previous attempts to capture similar con-
cepts [BKNS00]. This is important, because the users who interpret the findings of an outlier
detection tool and make decisions based on them are likely to be domain experts, not KDD
experts.

• We propose a novel (statistically intuitive) method that selects a point as an outlier if its MDEF
value deviates significantly (more than three standard deviations) from the local averages. We
also show how to quickly estimate the average and standard deviation of MDEF values in a
neighborhood. Our method is particularly appealing, because it provides an automatic, data-
dictated cut-off for determining outliers, by taking into account the distribution of distances
between pairs of objects.

• We present several outlier detection schemes and algorithms using MDEF. Our LOCI algorithm,
using an exact computation of MDEF values, is at least as fast as the best previous methods.

• We show how MDEF lends itself to a much faster, approximate algorithm (aLOCI) that still
yields high-quality results. In particular, because the MDEF is associated with thecorrelation
integral [BF95, TTPF01], it is an aggregate measure. We show how approximation methods
such asbox countingcan be used to reduce the computational cost to onlyO(kN), i.e., linear
both with respect to the data set sizeN and the number of dimensionsk. Previous methods
are considerably slower, because for each point, they must iterate over every member of a local
neighborhood or cluster; aLOCI does not.

• We extend the usual notion of an “outlier-ness” score to a more informativeLOCI plot. Our
method computes a LOCI plot for each point; this plot summarizes a wealth of information about
the points in its vicinity, determining clusters, micro-clusters, their diameters and their inter-
cluster distances. Such plots can be displayed to the user, as desired. For example, returning
the LOCI plots for the set of detected outliers enables users to drill down on outlier points for
further understanding. None of the existing outlier-detection methods can match this feature,
because they restrict themselves to a single number as an outlier-ness score.
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Local Density Problem Multi−granularity Problem

Figure 1: (a) Local density problem, and (b) multi-granularity problem

• We present extensive experimental results using both real world and synthetic data sets to verify
the effectiveness of the LOCI method. We show that, in practice, the algorithm scales linearly
with data size and with dimensionality. We demonstrate the time-quality trade-off by comparing
results from the exact and approximate algorithms. The approximate algorithm can, in most
cases, detect all outstanding outliers very efficiently.

To the best of our knowledge, this is the first work to use approximate computations to speed up out-
lier detection. Using fast approximate calculations of the aggregates computed by an outlier detection
algorithm (such as the number of neighbors within a given distance) makes a lot of sense for large
databases. Considerable effort has been invested toward finding good measures of distance. How-
ever, very often it is quite difficult, if not impossible, to precisely quantify the notion of “closeness”.
Furthermore, as the data dimensionality increases, it becomes more difficult to come up with such
measures. Thus, there is already an inherent fuzziness in the concept of an outlier and any outlier
score is more of an informative indicator than a precise measure.

This paper is organized as follows. In Section 2 we give a brief overview of related work on
outlier detection. Section 3 introduces the LOCI method and describes some basic observations and
properties. Section 4 describes our LOCI algorithm, while Section 5 describes our aLOCI algorithm.
Section 6 presents our experimental results, and we conclude in Section 7.

2 Related work

The existing approaches to outlier detection can be classified into the following five categories.

Distribution-based approach. Methods in this category are typically found in statistics textbooks.
They deploy some standard distribution model (e.g., Normal) and flag as outliers those objects which
deviate from the model [BL94, Haw80, RL87]. However, most distribution models typically apply
directly to the feature space and are univariate (i.e., have very few degrees of freedom). Thus, they are
unsuitable even for moderately high-dimensional data sets. Furthermore, for arbitrary data sets without
any prior knowledge of the distribution of points, we have to perform expensive tests to determine
which model fits the data best, if any!

2



Depth-based approach. This is based on computational geometry and computes different layers of
k-d convex hulls [JKN98]. Objects in the outer layer are detected as outliers. However, it is well-
known that these algorithms suffer from the dimensionality curse and cannot cope with largek.

Clustering approach. Many clustering algorithms detect outliers as by-products [JMF99]. How-
ever, since the main objective is clustering, they are not optimized for outlier detection. Furthermore,
in most cases, the outlier detection criteria are implicit and cannot easily be inferred from the clus-
tering procedures. An intriguing clustering algorithm using the fractal dimension has been suggested
by [BC00]; however it has not been demonstrated on real datasets.

The above three approaches for outlier detection are not appropriate for high-dimensional, large,
arbitrary data sets. However, this is often the case with KDD in large databases. The following two
approaches have been proposed and are attracting more attention.

Distance-based approach. This was originally proposed by E.M. Knorr and R.T. Ng [KN97, KN98,
KN99, KNT00]. An object in a data setP is a distance-based outlierif at least a fractionβ of the
objects inP are further thanr from it. This outlier definition is based on a single, global criterion
determined by the parametersr andβ. This can lead to problems when the data set has both dense and
sparse regions [BKNS00] (see Figure 1(a); either the left outlier is missed or every object in the sparse
cluster is also flagged as an outlier).

Density-based approach. This was proposed by M. Breunig, et al. [BKNS00]. It relies on thelocal
outlier factor (LOF) of each object, which depends on the local density of its neighborhood. The
neighborhood is defined by the distance to theMinPts-th nearest neighbor. In typical use, objects
with a high LOF are flagged as outliers. W. Jin, et al. [JTH01] proposed an algorithm to efficiently
discover top-n outliers using clusters, for a particular value ofMinPts.

LOF does not suffer from the local density problem. However, selectingMinPts is non-trivial. In
order to detect outlying clusters,MinPts has to be as large as the size of these clusters (see Figure 1(b);
if we use a “shortsighted” definition of a neighborhood—i.e., too few neighbors—then we may miss
small outlying clusters), and computation cost is directly related toMinPts. Furthermore, the method
exhibits some unexpected sensitivity on the choice ofMinPts. For example, suppose we have only
two clusters, one with 20 objects and the other with 21 objects. ForMinPts = 20, all objects in
the smaller cluster have large LOF values, and this affects LOF values over any range that includes
MinPts = 20.

In contrast, LOCI automatically flags outliers, based on probabilistic reasoning. Also, MDEF is
not so sensitive to the choice of parameters, as in the above 20-21 clusters example. Finally, LOCI is
well-suited for fast, one pass,O(kN) approximate calculation. Although some algorithms exist for
approximate nearest neighbor search [AMN+98, Ber93, GIM99], it seems unlikely that these can be
used to achieveO(kN) time with LOF. Our method uses an aggregate measure (the proposed local
correlation integral) that relies strictly on counts. Because it can be estimated (with box-counting)
without iterating over every point in a set, it can easily cope with multiple granularities, without an
impact on speed.
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Figure 2: Estimation of MDEF from the local correlation integral and neighbor count functions. The
dashed curve is the number ofαr-neighbors ofpi and the solid curve is the average number ofαr-
neighbors over ther-neighborhood (i.e., sampling neighborhood) ofpi.

3 Proposed method

One can argue that, intuitively, an object is an “outlier” if it is in some way “significantly different”
from its “neighbors.” Two basic questions that arise naturally are:

• What constitutes a “neighborhood?”

• How do we determine “difference” and whether it is “significant?”

Inevitably, we have to make certain choices. Ideally, these should lead to a definition that satisfies the
following, partially conflicting criteria:

• It is intuitive and easy to understand: Those who interpret the results are experts in their domain
and not on outlier detection.

• It is widely applicable and provides reasonable flexibility: Not everyone has the same idea of
what constitutes an outlier and not all data sets conform to the same, specific rules (if any).

• It should lend itself to fast computation: This is obviously important with today’s ever-growing
collections of data.

3.1 Multi-granularity deviation factor (MDEF)

In this section, we introduce the multi-granularity deviation factor (MDEF), which satisfies the prop-
erties listed above. Let ther-neighborhood of an objectpi be the set of objects within distancer of
pi.

Intuitively, the MDEF at radiusr for a pointpi is the relative deviation of its local neighborhood
density from the average local neighborhood density in itsr-neighborhood. Thus, an object whose
neighborhood density matches the average local neighborhood density will have an MDEF of 0. In
contrast, outliers will have MDEFs far from 0.
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Symbol Definition

P Set of objectsP = {p1, . . . , pi, . . . , pN}.
pi

N Data set size (|P| ≡ N ).
k Dimension of data set, i.e., whenP is a vector space,pi = (p1

i , p
2
i , . . . , p

k
i ).

d(pi, pj) Distance betweenpi andpj .
RP Point set radius, i.e.,RP ≡ maxpi,pj∈P d(pi, pj).
NN (pi,m) Them-th nearest neighbor of objectpi (NN (pi, 0) ≡ pi).
N (pi, r) The set ofr-neighbors ofpi, i.e.,

N (pi, r) ≡ {p ∈ P | d(p, pi) ≤ r}

Note that the neighborhood containpi itself, thus the counts can never be
zero.

n(pi, r) The number ofr-neighbors ofpi, i.e.,n(pi, r) ≡ |N (pi, r)|.
n̂(pi, r, α) Average ofn(p, αr) over the set ofr-neighbors ofpi, i.e.,

n̂(pi, r, α) ≡
∑

p∈N (pi,r)
n(p, αr)

n(pi, r)

σn̂(pi, r, α) Standard deviation ofn(p, αr) over the set ofr-neighbors, i.e.,

σn̂(pi, r, α) ≡

√∑
p∈N (pi,r) (n(p, αr)− n̂(pi, r, α))2

n(pi, r)

When clear from the context (n̂), we use justσn̂.

MDEF (pi, r, α) Multi-granularity deviation factor for pointpi at radius (or scale)r.
σMDEF (pi, r, α) Normalized deviation (thus, directly comparable toMDEF ).
kσ Determines what issignificantdeviation, i.e., points are flagged as outliers

iff
MDEF (pi, r, α) > kσσMDEF (pi, r, α)

We fix this value tokσ = 3 (see Lemma 1).

C(pi, r, α) Set of cells on some grid, with cell side2αr, each fully contained within
L∞-distancer from objectpi.

Ci Cell in some grid.
ci The object count within the corresponding cellCi.
Sq(pi, r, α) Sum of box counts to theq-th power, i.e.,

Sq(pi, r, α) ≡
∑

Ci∈C(pi,r,α)

cq
i

Table 1: Symbols and definitions.
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Figure 3: Definitions forn and n̂—for instancen(pi, r) = 4, n(pr, αr) = 1, n(p1, αr) = 6 and
n̂(pi, r, α) = (1 + 6 + 5 + 1)/4 = 3.25.

To be more precise, we define the following terms (Table 1 describes all symbols and basic defi-
nitions). Letn(pi, αr) be the number of objects in theαr-neighborhood ofpi. Let n̂(pi, r, α) be the
average, over all objectsp in ther-neighborhood ofpi, of n(p, αr) (see Figure 3). The use of two radii
serves to decouple the neighbor size radiusαr from the radiusr over which we are averaging. We
denote as thelocal correlation integralthe functionn̂(pi, α, r) over allr.

Definition 1 (MDEF). For anypi, r andα we define themulti-granularity deviation factor(MDEF)
at radius (or scale)r as:

MDEF (pi, r, α) =
n̂(pi, r, α)− n(pi, αr)

n̂(pi, α, r)
(1)

= 1− n(pi, αr)
n̂(pi, α, r)

(2)

See Figure 2. Note that ther-neighborhood for an objectpi always containspi. This implies that
n̂(pi, α, r) > 0 and so the above quantity is always defined.

For faster computation of MDEF, we will sometimesestimatebothn(pi, αr) andn̂(pi, r, α). This
leads to the following definitions:

Definition 2 (Counting and sampling neighborhood).Thecounting neighborhood(or αr-neighborhood)
is the neighborhood of radiusαr, over which eachn(p, αr) is estimated. Thesampling neighborhood
(or r-neighborhood) is the neighborhood of radiusr, over which we collect samples ofn(p, αr) in
order to estimatên(pi, r, α).

In Figure 3, for example, the large circle bounds the sampling neighborhood forpi, while the
smaller circles bound counting neighborhoods for variousp (see also Figure 2).

The main outlier detection scheme we propose relies on the standard deviation of theαr-neighbor
count over the sampling neighborhood ofpi. We thus define the following quantity

σMDEF (pi, r, α) =
σn̂(pi, r, α)
n̂(pi, r, α)

(3)
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which is the normalized standard deviationσn̂(pi, r, α) of n(p, αr) for p ∈ N (pi, r) (in Section 5 we
present a fast, approximate algorithm for estimatingσMDEF ).

The main reason we use anextendedneighborhood (α < 1) for sampling is to enable fast, approx-
imate computation of MDEF as explained in Section 5. Besides this,α < 1 is desirable in its own
right to deal with certain singularities in the object distribution (we do not discuss this due to space
considerations).

Advantages of our definitions. Among several alternatives for an outlier score (such asmax(n̂/n, n/n̂),
to give one example), our choice allows us to use probabilistic arguments for flagging outliers. This
is a very important point and is exemplified by Lemma 1 in Section 3.2. The above definitions and
concepts make minimal assumptions. The only general requirement is that a distance is defined. Ar-
bitrary distance functions are allowed, which may incorporate domain-specific, expert knowledge, if
desired. Furthermore, the standard deviation scheme assumes that pairwise distancesat a sufficiently
small scaleare drawn from a single distribution, which is reasonable.

For the fast approximation algorithms, we make the following additional assumptions (the exact
algorithms do not depend on these):

• Objects belong to ak-dimensional vector space, i.e.,pi = (p1
i , p

2
i , . . . , p

k
i ). This assumption

holds in most situations. However, if the objects belong to an arbitrary metric space, then it is
possible to embed them into a vector space. There are several techniques for this [CNBYM01]
which use theL∞ norm on the embedding vector space1.

• We use theL∞ norm, which is defined as||pi − pj ||∞ ≡ max1≤m≤k |pm
i − pm

j |. This is not a
restrictive hypothesis, since it is well-known that, in practice, there are no clear advantages of
one particular norm over another [FLM77, GIM99].

3.2 LOCI outlier detection

In this section, we describe and justify our main outlier detection scheme. It should be noted that,
among all alternatives in the problem space LOCI can be easily adapted to match several choices. It
computes the necessary summaries in one pass and the rest is a matter of interpretation.

In particular, given the above definition of MDEF, we still have to make a number of decisions. In
particular, we need to answer the following questions:

• Sampling neighborhood:Which points constitute the sampling neighborhood ofpi, or, in other
words, which points do we average over to computen̂ (and, in turn, MDEF) for api in question?

• Scale:Regardless of the choice of neighborhood, over what range of distances do we compare
n andn̂?

• Flagging: After computing the MDEF values (over a certain range of distances), how do we use
them to choose the outliers?

1Given objectsπi in a metric spaceM with distance functionδ(πi, πj), one typical approach is to choosek landmarks
{Π1, . . . , Πk} ⊆ M and map each objectπi to a vector with componentspj

i = δ(πi, Πj).
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LOCI outlier detection method. The proposed LOCI outlier detection method answers the above
questions as follows. Advantages and features of LOCI are due to these design choices combined with
inherent properties of MDEF.

• Large sampling neighborhood: For each point and counting radius, the sampling neighbor-
hood is selected to be large enough to contain enough samples. We chooseα = 1/2 in all exact
computations, and we typically useα = 1/16 in aLOCI (introduced in Section 5) for robustness
(particularly in the estimation ofσMDEF ).

• Full-scale: The MDEF values are examined for a wide range of sampling radii. In other word,
the maximum sampling radius isrmax ≈ α−1RP (which corresponds to maximum counting
radius ofRP). The minimum sampling radiusrmin is determined based on the number of objects
in the sampling neighborhood. We always use a smallest sampling neighborhood withn̂min =
20 neighbors; in practice, this is small enough but not too small to introduce statistical errors in
MDEF andσMDEF values.

• Standard deviation-based flagging: A point is flagged as an outlier, if foranyr ∈ [rmin , rmax ]
its MDEF issufficientlylarge, i.e.,

MDEF (pi, r, α) > kσσMDEF (pi, r, α)

In all our experiments, we usekσ = 3 (see Lemma 1).

The standard deviation-based flagging is one of the main features of the LOCI method. It replaces
any “magic cut-offs” with probabilistic reasoning based onσMDEF . It takes into accountdistribution
of pairwise distancesand compares each object to those in its sampling neighborhood. Note that,
even if the global distribution of distances varies significantly (e.g., because it is a mixture of very
different distributions), the use of thelocal deviation successfully solves this problem. In fact, in many
real data sets, the distribution of pairwise distances follows a specific distribution over all or most
scales [TTPF01, BF95]. Thus, this approach works well for many real data sets. The user may alter
the minimum neighborhood sizermin andkσ if so desired, but in practice this is unnecessary.

Lemma 1 (Deviation probability bounds). For any distribution of pairwise distances, and for any
randomly selectedpi, we have

Pr {MDEF (pi, r, α) > kσσMDEF (pi, r, α)} ≤ 1
k2

σ

Proof. From Chebyshev’s inequality it follows that

Pr {MDEF (pi, r, α) > kσσMDEF (pi, r, α)}
≤ Pr {|MDEF (pi, r, α)| > kσσMDEF (pi, r, α)}

≤ σ2
MDEF (pi, r, α)/(kσσMDEF (pi, r, α))2 = 1/k2

σ �

This is a relatively loose bound, but it holds regardless of the distribution. For known distributions,
the actual bounds are tighter; for instance, if the neighborhood sizes follow a normal distribution and
kσ = 3, much less than 1% of the points should deviate by that much (as opposed to≈ 10% suggested
by the above bound).

8



20 30 40 50 60 70

0
10

20
30

40
Micro − Dataset

x

y

0 10 20 30 40 50 60

1
5

20
10

0
50

0

Micro−cluster point

r
C

ou
nt

s

0 10 20 30 40 50 60

1
5

20
10

0
50

0

Cluster point

r

C
ou

nt
s

0 10 20 30 40 50 60

1
5

20
10

0
50

0

Outstanding outlier

r

C
ou

nt
s

Figure 4: LOCI plots from an actual dataset—see also Section 6.

3.3 Alternative interpretations

As mentioned in Section 3.2, we have a range of design choices for outlier detection schemes. Different
answers give rise to different outlier detection schemes and provide the user with alternative views. We
should emphasize that, if the user want, LOCI can be adapted toanydesirable interpretation, without
any re-computation. Our fast algorithms estimate all the necessary quantities with a single pass over
the data and build the appropriate “summaries,” no matter how they are later interpreted.

Sampling neighborhood: Small vs. large. The choice depends on whether we are interested in the
deviation ofpi from a small (highly local) or a relatively large neighborhood. Since LOCI employs
standard deviation-based flagging, a sampling neighborhood large enough to get a sufficiently large
sample is desirable. However, when the distance distribution varies widely (which rarely happens,
except atverylarge radii) or if the user chooses non-deviation based scheme (which, although possible,
is not recommended) this is an option.

Scale: Single vs. range and distance-based vs. population-based.Regardless of sampling neigh-
borhood, users could choose to examine MDEF andσMDEF at either a single radius (which is very
close to the distance-based approach [KN99]) or a limited range of radii (same for all the points). Al-
ternatively, they may implicitly specify the radius (or radii) by neighborhood size (effectively varying
the radius at eachpi, depending on density). Either approach might make sense.

Flagging: Thresholding vs. ranking vs. standard deviation-based. Use of the standard deviation
is our main contribution and the recommended approach. However, we can easily match previous
methods either by “hard thresholding” (if we have prior knowledge about what to expect of distances
and densities) or “ranking” (if we want to catch a few “suspects” blindly and, probably, “interrogate”
them manually later).

3.4 LOCI plot

In this section we introduce theLOCI plot. This is a powerful tool, no matter what outlier detection
scheme is employed. It can be constructed instantly from the computed “summaries” for any pointpi

the user desires and it gives a wealth of information about the vicinity ofpi: why it is an outlier with
regard to its vicinity, as well as information about nearby clusters and micro-clusters, their diameters
and inter-cluster distances.
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Definition 3 (LOCI plot). For any objectpi, the plot ofn(pi, αr) and n̂(pi, r, α) with n̂(pi, r, α) ±
3σn̂(pi, r, α), versusr (for a range of radii of interest), is called itsLOCI plot.

We give detailed examples from actual datasets in Section 6. Here we briefly introduce the main
features (see also Figure 4). The solid line showsn̂ and the dashed line isn is all plots.

• Consider the point in the micro-cluster (atx = 18, y = 20). Then value looks similar up to the
distance (roughly 30) we encounter the large cluster. Earlier, the increase in deviation (in the
range of≈ 10–20) indicates the presence of a (small) cluster. Half the width (sinceα = 1/2,
and the deviation here is affected by the counting radius) of this range (about10/2 = 5) is the
radius of this cluster.

• A similar increase in deviation happens at radius 30, along with an increase inn̂. Also, note that
n shows a similar jump atα−1×30 = 60 (this time it is the sampling radius that matters). Thus,
≈ 30 is the distance to the next (larger) cluster.

• In the cluster point (atx = 64, y = 19) we see from the middle LOCI plot that the two counts (n̂
andσn̂) are similar, as expected. The increase in deviation, however, provides the information
described above for the first increase (here the counting radius matters again, so we should
multiply the distances byα).

• The general magnitude of the deviation always indicates how “fuzzy” (i.e., spread-out and in-
consistent) a cluster is.

• For the outstanding outlier point (atx = 18, y = 30), we see the deviation increase along with
the pair of jumps in̂n andn (the distance between the jumps determined byα) twice, as we
would expect: the first time when we encounter the micro-cluster and the second time when we
encounter the large cluster.

// Pre-processing
Foreachpi ∈ P:

Perform a range-search
for Ni = {p ∈ P | d(pi, p) ≤ rmax}

FromNi, construct a sorted listDi

of the critical andα-critical distances ofpi

// Post-processing
Foreachpi ∈ P:

For each radiir ∈ Di (ascending):
Updaten(pi, αr) andn̂(pi, r, α)
Fromn andn̂, compute
MDEF (pi, r, α) andσMDEF (pi, r, α)

If MDEF (pi, r, α) > 3σMDEF (pi, r, α),
flagpi

Figure 5: The exact LOCI algorithm.
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4 The LOCI algorithm

In this section, we describe our algorithm for detecting outliers using our LOCI method. This algorithm
computes exact MDEF andσMDEF values for all objects, and then reports an outlier whenever MDEF
is more than three times larger thanσMDEF for the same radius. Thus the key to a fast algorithm is an
efficient computation of MDEF andσMDEF values.

We can considerably reduce the computation time for MDEF andσMDEF values by exploiting the
following properties:

Observation 1. For each objectpi and eachα, n(pi, r), n̂(pi, r, α), and thusMDEF (pi, r, α) and
σMDEF (pi, r, α) are all piecewise constant functions ofr. In particular, n(pi, r) andn(p, αr) for all
p in ther-neighborhood ofpi can change only when the increase ofr causes a new point to be added
to either ther-neighborhood ofpi or theαr-neighborhood of any of thep.

This leads to the following definition, whereN is the number of objects andNN (pi,m) is the
m-th nearest neighbor ofpi.

Definition 4 (Critical Distance). For 1 ≤ m ≤ N , we calld(NN (pi,m), pi) a critical distanceof pi

andd(NN (pi,m), pi)/α anα-critical distanceof pi.

By observation 1, we need only consider radii that are critical orα-critical. Figure 5 shows our
LOCI algorithm. In a pre-processing pass, we determine the critical andα-critical distancesDi for
each objectpi. Then considering each objectpi in turn, and considering increasing radiusr from Di,
we maintainn(pi, αr), n̂(pi, r, α), MDEF (pi, r, α), andσMDEF (pi, r, α). We flagpi as an outlier if
MDEF (pi, r, α) > 3σMDEF (pi, r, α) for somer.

The worst-case complexity of this algorithm isO(N × (time of rmax range search + n2
ub)),

wherenub = max{n(pi, rmax ) | pi ∈ P}. Alternatively, if we specify the range of scales in-
directly by numbers of neighborsnmin andnmax instead of explicitrmin and rmax , thenrmin =
d(NN (pi, nmin), pi) andrmax = d(NN (pi, nmax ), pi). The complexity of this alternative isO(N ×
(time of Rmax range search + n2

max ), whereRmax = max{d(NN (pi, nmax ), pi) | pi ∈ P}. Thus,
the complexity of our LOCI algorithm is roughly comparable to that of the best previous density-based
approach [BKNS00].

5 The aLOCI algorithm

In this section we present our fast, approximate LOCI algorithm (aLOCI). Although algorithms exist
for approximate range queries and nearest neighbor search [AMN+98, Ber93, GIM99], applying them
directly to previous outlier detection algorithms (or the LOCI algorithm; see Figure 5) would not
eliminate the high cost of iterating over each object in the (sampling) neighborhood of eachpi. Yet with
previous approaches,failing to iterate over each such object means the approach cannot effectively
overcome the multi-granularity problem (Figure 1(b)). In contrast, our MDEF-based approach is well-
suited to fast approximations that avoid these costly iterations, yet are able to overcome the multi-
granularity problem. This is because our approach essentially requires only counts at various scales.

5.1 Definitions and observations

Our aLOCI algorithm is based on a series of observations and techniques outlined in this section.
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To quickly estimate the average number ofαr-neighbors over all points in anr-neighborhood of an
objectpi ∈ P (from now on, we assumeL∞ distances), we can use the following approach. Consider a
grid of cells with side2αr over the setP. Perform abox countof the grid: For each cellCj in the grid,
compute the count,cj , of the number of objects in the cell. Each object inCj hascj neighbors in the
cell (counting itself), so the total number of neighbors over all objects inCj is c2

j . Denote byC(pi, r, α)
the set of all cells in the grid such that the entire cell is within distancer of pi. We useC(pi, r, α) as
an approximation for ther-neighborhood ofpi. Summing over the entirer-neighborhood, we get
S2(pi, r, α), whereSq(pi, r, α) ≡

∑
Cj∈C(pi,r,α) cq

j . The total number of objects is simply the sum of
all box counts, i.e.,S1(pi, r, α).

Lemma 2 (Approximate average neighbor count).Let α = 2−l for some positive integerl. The
average neighbor count overpi’s sampling neighborhood is approximately:

n̂(pi, r, α) =
S2(pi, r, α)
S1(pi, r, α)

Proof. Follows from the above observations; for details, see [Sch88].

However, we need to obtain information at several scales. We can efficiently store cell counts in
a k-dimensional quad-tree: The first grid consists of a single cell, namely the bounding box ofP. We
then recursively subdivide each cell of side2αr into 2k subcells, each with radiusαr, until we reach
the scale we desire (specified either in terms of its side length or cell count). We keep only pointers to
the non-empty child subcells in a hash table (typically, for large dimensionsk, most of the2k children
are empty, so this saves considerable space over using an array). For our purposes, we only need to
store thecj values (one number per non-empty cell), and not the objects themselves.

The recursive subdivision of cells dictates the choice2 of α = 2−l for some positive integerl, since
we essentially discretize the range of radii at powers of two.

In addition to approximatinĝn, our method requires an estimation ofσn̂. The key to our fast
approximation ofσn̂ is captured in the following lemma:

Lemma 3 (Approximate std. deviation of neighbor count).Letα = 2−l for some positive integerl.
The standard deviation of the neighbor count is approximately:

σn̂(pi, r, α) =

√
S3(pi, r, α)
S1(pi, r, α)

− S2
2(pi, r, α)

S2
1(pi, r, α)

Proof. Following the same reasoning as in Lemma 2, the deviation for each object within each cell
Cj is cj − n̂(pi, r, α) ≈ cj − S2(pi, r, α)/S1(pi, r, α). Thus, the sum of squared differences for all
objects within the cell iscj (cj − S2(pi, r, α)/S1(pi, r, α))2. Summing over all cells and dividing by

the count of objectsS1(pi, r, α) gives 1
S1

∑
j

(
c3
j −

2c2jS2

S1
+ cjS2

2

S2
1

)
= S3

S1
− 2S2

2

S2
1

+ S2
2

S2
1
, which leads to

the above result.
2In principle, we can choose any integer powerα = c−l by subdividing each cell intock subcells. However, this makes

no difference in practice.
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// Initialization
Select set of shiftsS = {s0, s1, . . . , sg}, wheres0 = 0
lα = − lg(α)
Foreachsi ∈ S:

Initialize quadtreeQ(si)
// Pre-processing stage
Foreachpi ∈ P:

Foreachsi ∈ S:
Insertpi in Q(si)

// Post-processing stage
Foreachpi ∈ P:

Foreach levell:
Select cellCi in Q(sa) with side

di = RP/2l and center closest topi

Select cellCj in Q(sb) with side
dj = RP/2l−lα and center closest to center ofCi

EstimateMDEF (pi,
dj

2 , α) andσMDEF (pi,
dj

2 , α)
If MDEF (pi,

dj

2 , α) > 3σMDEF (pi,
dj

2 , α), flagpi

Figure 6: The approximate aLOCI algorithm.

From the above discussion, we see that box counting within quad trees can be used to quickly
estimate the MDEF values andσMDEF values needed for our LOCI approach. However, in practice,
there are several important issues that need to be resolved to achieve accurate results, which we address
next.

Discretization. A quad-tree decomposition of the feature space inherently implies that we can sam-
ple the actual averages and deviations at radii that are proportional to powers of two (or, in general,
cl multiples ofrmin , for some integersc and l). In essence, we discretize all quantities involved by
sampling them at intervals of size2l. However, perhaps surprisingly, this discretization does not have a
significant impact on our ability to detect outliers. Consider a relatively isolated objectpi and a distant
cloud of objects. Recall that we compute MDEF values for an object starting with the smallest radius
for which its sampling neighborhood hasnmin = 20 objects, in order to make the (exact) LOCI algo-
rithm more robust and self-adapting to the local density. Similarly, for the aLOCI algorithm, we start
with the smallest discretized radius for which its sampling neighborhood has at least 20 neighbors.
Considering our pointpi, observe that at large enough radius, both its sampling and counting neigh-
borhoods will contain many objects from the cloud, and these points will have similar neighborhood
counts topi, resulting in an MDEF near zero (i.e., no outlier detection). However, at some previous
scale, the sampling neighborhood will contain part of the cloud but the counting neighborhood will
not, resulting in an MDEF near one, as desired for outlier detection. Note that, in order for this to
work, it is crucial that (a) we use anα ≤ 2−l, and (b) we performnmin neighborhood thresholding
based on the sampling neighborhood and not the counting neighborhood.

Locality. Ideally, we would like to have the quad-tree grids contain each object of the dataset at
the exact center of cells. This is not possible, unless we construct one quad-tree per object, which is
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ridiculously expensive. However, a single grid may provide a close enough approximation for many
objects in the data set. Furthermore, outstanding outliers are typically detected no matter what the grid
positioning is: the further an object is from its neighbors, the more “leeway” we have to be off-center
(by up to at least half the distance to its closest neighbor!).

In order to further improve accuracy for less obvious outliers, we utilize several grids. In practice,
the number of gridsg does not depend on the feature space dimensionk, but rather on the distribution
of objects (or, theintrinsic dimensionality [CNBYM01, BF95] of the data set, which is typically much
smaller thank). Thus, in practice, we can achieve good results with a small number of grids.

To summarize, the user may selectg depending on the desired accuracy vs. speed. Outstanding
outliers are typically caught regardless of grid alignment. Performance on less obvious outliers can be
significantly improved using a small numberg − 1 of extra grids.

Next we have to answer two related questions: how should we pick grid alignments and, given the
alignments, how should we select the appropriate grid for each point?

Grid alignments. Each grid is constructed by shifting the quad-tree bounding box bys (ak-dimensional
vector)3. At each grid levell (corresponding to cell diameterdl = RP/2l), the shift effectively “wraps
around,” i.e., each cell is effectively shifted bys mod dl, where mod is applied element-wise and
should be interpreted loosely (as the fractional part of the division). Therefore, with a few shifts
(each portion of significant digits essentially affecting different levels), we can achieve good results
throughout all levels. In particular, we recommend using shifts obtained by selecting each coordinate
uniformly at random from its domain.

Grid selection. For any objectpi in question, which cells and from which grids do we select to
(approximately) cover the counting and sampling neighborhoods? For the counting neighborhood of
pi, we select a cellCi (at the appropriate levell) that containspi as close as possible to its center; this
can be done inO(kg) time.

For the sampling neighborhood, a naive choice might be to search all cells in thesamegrid that
are adjacent toCi. However, the number of such cells isO(2k), which leads to prohibitively high
computational cost for high dimensional data. Unfortunately, if we insist on this choice, this cost
cannot be avoided; we will either have to pay it when building the quad-tree or when searching it.

Instead, we select a cellCj of diameterdl/α (wheredl = RP/2l) in some grid (possibly a different
one), such that the center ofCj lies as close as possible to the center ofCi. The reason we pickCj based
on its distance from the center ofCi andnot from pi is that we want the maximum possible volume
overlap ofCi and Cj . Put differently, we have already picked an approximation for the counting
neighborhood ofpi (however good or bad) and next we want the best approximation of the sampling
neighborhood,giventhe choice ofCi. If we used the distance frompi we might end up with the latter
approximation being “incompatible” with the former. Thus, this choice is the one that gives the best
results. The final step is to estimate MDEF andσMDEF , by performing a box-count on the sub-cells
of Cj .

Deviation estimation. A final important detail has to do with successfully estimatingσMDEF . In
certain situations (typically, in either very small or very large scales), many of the sub-cells ofCj may

3Conceptually, this is equivalent to shifting the entire data set by−s
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Dataset Description

Dens Two 200-point clusters of different densities and one outstanding out-
lier.

Micro A micro-cluster with 9 points, a large, 600-point cluster (same density)
and one outstanding outlier.

Sclust A Gaussian cluster with 500 points.
Multimix A 250-point Gaussian cluster, two uniform clusters (200 and 400

points), three outstanding outliers and 3 points along a line from the
sparse uniform cluster.

NBA Games, points per game, rebounds per game, assists per game (1991–92
season).

NYWomen Marathon runner data, 2229 women from the NYC marathon: average
pace (in minutes per mile) for each stretch (6.2, 6.9, 6.9 and 6.2 miles)

Table 2: Description of synthetic and real data sets.

be empty. If we do a straight box-count on these, we may under-estimate the deviation and erroneously
flag objects as outliers.

This problem is essentially solved by giving more weight to the counting neighborhood ofpi: in
the set of box counts used forSq(pi, r, α), we also includeci w times (w = 2 works well in all the
datasets we have tried), besides the counts for the sub-cells ofCj .

Lemma 4 (Deviation smoothing). If we add a new valuea to set ofN values with averagem and
variances2, then the following hold about the new averageµ and varianceσ2:

σ2 > s2 ⇔ |a−m|
s

>
N + w

N
and lim

N→∞

σ2

s2
= 1

wherew is the weight ofa (i.e., it is countedw times).

Proof. From the definitions for mean and standard deviation, we have

µ =
w

N + w
a +

N

N + w
m, σ2 =

w

N + w
(a− µ)2 +

N

N + w
s2

and (a− µ)2 =
(

N

N + w

)2

(a−m)2

Thereforeσ2

s2 = N2

(N+w)3

(
a−m

s

)2 + N
N+w . The results follow from this relation.

From Lemma 4, if the number of non-empty sub-cells is large, a smallw weighting has small
effect. For outstanding outliers (i.e., large|a−m|/s), this weighting does not affect the the estimate of
σMDEF significantly. Thus, we may only err on the conservative side for a few outliers, while avoiding
several “false alarms” due to underestimation ofσMDEF .

15



Time vs. size

2D Gaussian
size (N)

tim
e 

(t
)

10 100 1000 10000 100000

0.
21

1.
67

18
.4

4
21

1.
84

25
99

.8
1

Actual
Fit − slope 0.03

Time vs. dimension

Gaussian, N=1000
dimension (k)

tim
e 

(t
)

2 3 4 10 20

17
.7

7
21

.5
9

31
.3

1
43

.1
9

54
.2

1

Actual
Fit − slope 2.05

Figure 7: Time versus data set size and dimension (log-log scales).

5.2 The approximation algorithm

The aLOCI algorithm, based on the discussion in the previous section, is illustrated in Figure 6. The
quad-tree construction stage takes timeO(NLkg), whereL is the total number of levels (or scales),
i.e.,O(lg(rmax/rmin)). The scoring and flagging stage takes an additionalO(NL(kg+2k) time (recall
thatα is a constant). As noted above, the number of gridsg depends on the intrinsic dimensionality
of P. We found10 ≤ g ≤ 30 sufficient in all our experiments. Similarly,L can be viewed as
fixed for most data sets. Finally, the2k term is a pessimistic bound because of the sparseness in the
box counts. As shown in Section 6, in practice the algorithm scales linearly with data size and with
dimensionality. Moreover, even in the worst case, it is asymptotically significantly faster than the best
previous density-based approach.

6 Experimental evaluation

In this section we discuss results from applying our method to both synthetic and real datasets (de-
scribed in Table 2). We also briefly discuss actual performance measurements (wall-clock times).

6.1 Complexity and performance

Our prototype system is implemented in Python, with Numerical Python for fast matrix manipulation
and certain critical components (quad-trees and distance matrix computation) implemented in C as
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Figure 8: Synthetic data: LOF (MinPts = 10 to 30, top 10).
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Figure 9: Synthetic, LOCI. Top row:̂n = 20 to full radius,α = 0.5. Bottom row:n̂ = 20 to 40 except
micro wheren̂ = 200 to 230, α = 0.5.

language extensions (achieving a5× to 15× speedup). We are currently re-implementing the system
in C and preliminary results show at least a10× overall speedup. Figure 7 shows the wall clock times
on a synthetic dataset, versus data set size and dimension. All experiments were run on a PII 350MHz
with 384Mb RAM. The graphs clearly show that aLOCI scales linearly with dataset size as well as
dimension, as expected. In should be noted that the dataset chosen (a multi-dimensional Gaussian
cluster) is actually much denser throughout than a real dataset would be. Thus, the time vs. dimension
results are on the conservative side (lα = 4, or α = 1/16 in our experiments).

6.2 Synthetic data

We illustrate the intuition behind LOCI using a variety of synthetic datasets, demonstrate that LOCI
and aLOCI provide sound and useful results and we discuss how to interpret LOCI plots “in action.”
The results from LOF are shown in Figure 8. LOF is the current state of the art in outlier detection.
However, it provides no hints about how high an outlier score is high enough. A typical use of selecting
a range of interest and examining the top-N scores will either erroneously flag some points (N too
large) or fail to capture others (N too small). LOCI provides an automatic way of determining outliers
within the range of interest and captures outliers correctly.

Figure 9 shows the results from LOCI on the entire range of scales, from 20 toRP on the top row.
On the bottom row, we show the outliers at a subset of that range (20 to 40 neighbors around each
point). The latter is much faster to compute, even exactly, and still detects the most significant outliers.
Finally, Figure 10 shows the aLOCI results. However, LOCI does not stop there and can provide
information aboutwhyeach point is an outlier and about its vicinity (see Figure 12 and Figure 11).

Dens dataset. LOCI captures the outstanding outlier. By examining the LOCI plots we can get
much more information. In the leftmost column of Figure 11 it is clear that the outstanding outlier
is indeed significantly different from its neighbors. Furthermore, the radius where the deviation first
increases (≈ 5) and the associated jumps in counts correspond to the distance (≈ 5/2) to the first
cluster. The deviation increase (without change in counts) in the range of 50–80 corresponds to the
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Figure 10: Synthetic: aLOCI (10 grids, 5 levels,lα = 4, exceptmicro , wherelα = 3).

diameter (≈ 30) of the second cluster.
The second column in Figure 11 shows a point in the micro-cluster, which behaves very similarly

to those in its sampling neighborhood. Once again, the deviation increases correspond to the diameters
of the two clusters.

Finally, the two rightmost columns of Figure 11 show the LOCI plots for two points in the large
cluster, one of them on its fringe. From the rightmost column it is clear that the fringe point is tagged
as an outlier at a large radius and by a small margin. Also, the width of the radius range with increased
deviation corresponds to the radius of the large cluster.

“Drill-down.” It is important to note that the aLOCI plots (bottom row) already provide much of
the information contained in the LOCI plots (top row), such as the scale (or radius range) at which
each point is an outlier.If users desire detailed information about a particular range of radii, they
can select a few points flagged by aLOCI and obtain the LOCI plots. Such a “drill-down” operation
is common in decision support systems. Thanks to the accuracy of aLOCI, the user can immediately
focus on just a few points. Exact computation of the LOCI plots for a handful of points is fast (in the
worst case—i.e., full range of radii—it isO(kN) with a very small hidden constant; typical response
time is about one to two minutes on real datasets).

Micro dataset. In themicro dataset, LOCI automatically capturesall 14 points in the micro-
cluster, as well as the outstanding outlier. At a wider range of radii, some points on the fringe of the
large cluster are also flagged. The LOCI and aLOCI plots are in Figure 4 and Figure 12, respectively
(see Section 3.4 for discussion).

Sclust and Multimix datasets.We discuss these briefly, due to space constraints (LOCI plots
are similar to those already discussed, or combinations thereof). In thesclust dataset, as expected,
for small radii we do not detect any outliers, whereas for large radii we capture some large deviants.
Finally, in themultimix dataset, LOCI captures the isolated outliers, some of the “suspicious” ones
along the line extending from the bottom uniform cluster and large deviants from the Gaussian cluster.

6.3 Real data

In this section we demonstrate how the above rules apply in a real dataset (see Table 2). In the previous
section we discussed the shortcomings of other methods that provide a single number as an “outlier-
ness” score. Due to space constraints, we only show LOCI and aLOCI results and discuss the LOCI
plots from one real dataset (more results are in the full version of the paper).

NBAdataset.Results from LOCI and aLOCI are shown in Figure 13 (for comparison, see Table 3).
Figure 14 shows the LOCI plots. The overall deviation indicates that the points form a large, “fuzzy”
cluster, throughout all scales. Stockton is clearly an outlier, since he is far different from all other
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players, with respect toanystatistic. Jordan is an interesting case; although he is the top-scorer, there
are several other players whose overall performance is close (in fact, Jordan does not stand out with
respect to any of the other statistics). Corbin is one of the players which aLOCI misses. In Figure 13
he does not really stand out. In fact, his situation is similar to that of the fringe points in theDens
dataset!

NYWomendataset. Results from LOCI are shown in Figure 15 (aLOCI provides similar results,
ommited for space). This dataset also forms a large cluster, but the top-right section of the cluster is
much less dense than the part containing the vast majority of the runners. Although it may initially
seem surprising, upon closer examination, the situation here is very similar to theMicro dataset!
There are two outstanding outliers (extremely slow runners), a sparser but significant “micro-cluster”
of slow/recreational runners, then the vast majority of “average” runners which slowly merges with an
equally tight (but smaller) group of high-performers. Another important observation is that the fraction
of points flagged by both LOCI and aLOCI (about 5%) is well within our expected bounds. The LOCI
plots are shown in Figure 16 and can be interpreted much like those for theMicro dataset.

7 Conclusions

In summary, the main contributions of LOCI are:

• Like the state of the art, it can detect outliers and groups of outliers (or, micro-clusters). It also
includes several of the previous methods (or slight variants thereof) as a “special case.”

• Going beyond any previous method, it proposes an automatic, data-dictated cut-off to determine
whether a point is an outlier—in contrast, previous methods let the users decide, providing them
with no hints as to what cut-off is suitable for each dataset.
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Figure 11:Dens, LOCI plots.
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LOCI aLOCI LOCI aLOCI
# Player # Player # Player # Player
1 Stockton J. (UTA) 1 Stockton J (UTA) 8 Corbin T. (MIN)
2 Johnson K. (PHO) 2 Johnson K (PHO) 9 Malone K. (UTA)
3 Hardaway T. (GSW) 3 Hardaway T (GSW) 10 Rodman D. (DET)
4 Bogues M. (CHA) 11 Willis K. (ATL) 6 Willis K (ATL)
5 Jordan M. (CHI) 4 Jordan M (CHI) 12 Scott D. (ORL)
6 Shaw B. (BOS) 13 Thomas C.A. (SAC)
7 Wilkins D. (ATL) 5 Wilkins D (ATL)

Table 3: NBAoutliers with LOCI and aLOCI. All aLOCI outliers are shown in this table; see also
Figure 13.

• Our method successfully deals with both local density and multiple granularity.

• Instead of just an “outlier-ness” score, it provides a whole plot for each point that gives a wealth
of information.

• Our exact LOCI method can be computed as quickly as previous methods.

• Moreover, LOCI leads to a very fast, practically linear approximate algorithm,aLOCI, which
gives accurate results. To the best of our knowledge, this is the first time approximation tech-
niques have been proposed for outlier detection.

• Extensive experiments on synthetic and real data show that LOCI and aLOCI can automatically
detect outliers and micro-clusters, without user-required cut-offs, and that they quickly spot
outliers, expected and unexpected.
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Figure 12:Micro , LOCI plots—see Figure 4 for corresponding exact plots.
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Figure 14:NBA, LOCI plots.
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Figure 15:NYWomen, results, LOCI (̂n = 20 to full radius) and aLOCI (bottom; 6 levels,lα = 3, 18
grids).
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Figure 16:NYWomen, LOCI plots.
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